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Chapter 1

First-Order Differential
Equations

1.1 Terminology and Separable Equations

1. The differential equation is separable because it can be written

3y2 dy

dx
= 4x,

or, in differential form,
3y2 dy = 4x dx.

Integrate to obtain
y3 = 2x2 + k.

This implicitly defines a general solution, which can be written explicitly
as

y = (2x2 + k)1/3,

with k an arbitrary constant.

2. Write the differential equation as

x
dy

dx
= −y,

which separates as
1

y
dy = − 1

x
dx

if x 6= 0 and y 6= 0. Integrate to get

ln |y| = − ln |x|+ k.

Then ln |xy| = k, so
xy = c

1
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2 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

with c constant (c = ek). y = 0 is a singular solution, satisfying the
original differential equation.

3. If cos(y) 6= 0, the differential equation is

y

dx
=

sin(x+ y)

cos(y)

=
sin(x) cos(y) + cos(x) sin(y)

cos(y)

= sin(x) + cos(x) tan(y).

There is no way to separate the variables in this equation, so the differen-
tial equation is not separable.

4. Write the differential equation as

exey
dy

dx
= 3x,

which separates in differential form as

ey dy = 3xe−x dx.

Integrate to get
ey = −3e−x(x+ 1) + c,

with c constant. This implicitly defines a general solution.

5. The differential equation can be written

x
dy

dx
= y2 − y,

or
1

y(y − 1)
dy =

1

x
dx,

and is therefore separable. Separating the variables assumes that y 6= 0
and y 6= 1. We can further write(

1

y − 1
− 1

y

)
dy =

1

x
dx.

Integrate to obtain

ln |y − 1| − ln |y| = ln |x|+ k.

Using properties of the logarithm, this is

ln
∣∣∣y − 1

xy

∣∣∣ = k.
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1.1. TERMINOLOGY AND SEPARABLE EQUATIONS 3

Then
y − 1

xy
= c,

with c = ek constant. Solve this for y to obtain the general solution

y =
1

1− cx
.

y = 0 and y = 1 are singular solutions because these satisfy the differential
equation, but were excluded in the algebra of separating the variables.

6. The differential equation is not separable.

7. The equation is separable because it can be written in differential form as

sin(y)

cos(y)
dy =

1

x
dx.

This assumes that x 6= 0 and cos(y) 6= 0. Integrate this equation to obtain

− ln | cos(y)| = ln |x|+ k.

This implicitly defines a general solution. From this we can also write

sec(y) = cx

with c constant.

The algebra of separating the variables required that cos(y) 6= 0. Now
cos(y) = 0 if y = (2n+1)π/2, with n any integer. Now y = (2n+1)π/2 also
satisfies the original differential equation, so these are singular solutions.

8. The differential equation itself requires that y 6= 0 and x 6= −1. Write the
equation as

x

y

dy

dx
=

2y2 + 1

x

and separate the variables to get

1

y(2y2 + 1)
dy =

1

x(x+ 1)
dx.

Use a partial fractions decomposition to write this as(
1

y
− 2y

2y2 + 1

)
dy =

(
1

x
− 1

x+ 1

)
dx.

Integrate to obtain

ln |y| − 1

2
ln(1 + 2y2) = ln |x| − ln |x+ 1|+ c
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4 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

with c constant. This implicitly defines a general solution. We can go a
step further by writing this equation as

ln

(
y√

1 + 2y2

)
= ln

(
x

x+ 1

)
+ c

and take the exponential of both sides to get

y√
1 + 2y2

= k

(
x

x+ 1

)
,

which also defines a general solution.

9. The differential equation is

dy

dx
= ex − y + sin(y),

and this is not separable. It is not possible to separate all terms involving
x on one side of the equation and all terms involving y on the other.

10. Substitute

sin(x− y) = sin(x) cos(y)− cos(x) sin(y),

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y),

and

cos(2x) = cos2(x)− sin2(x)

into the differential equation to get the separated differential form

(cos(y)− sin(y)) dy = (cos(x)− sin(x)) dx.

Integrate to obtain the implicitly defined general solution

cos(y) + sin(y) = cos(x) + sin(x) + c.

11. If y 6= −1 and x 6= 0, we obtain the separated equation

y2

y + 1
dy =

1

x
dx.

To make the integration easier, write this as(
y − 1 +

1

1 + y

)
dy =

1

x
dx.

Integrate to obtain

1

2
y2 − y + ln |1 + y| = ln |x|+ c.

© 2018 Cengage Learning. All Rights reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



1.1. TERMINOLOGY AND SEPARABLE EQUATIONS 5

This implicitly defines a general solution. The initial condition is y(3e2) =
2, so put y = 2 and x = 3e2 to obtain

2− 2 + ln(3) = ln(3e2) + c.

Now
ln(3e2) = ln(3) + ln(e2) = ln(3) + 2,

so
ln(3) = ln(3) + 2 + c.

Then c = −2 and the solution of the initial value problem is implicitly
defined by

1

2
y2 − y + ln |1 + y| = ln |x| − 2.

12. Integrate
1

y + 2
dy = 3x2 dx,

assuming that y 6= −2, to obtain

ln |2 + y| = x3 + c.

This implicitly defines a general solution. To have y(2) = 8, let x = 2 and
y = 8 to obtain

ln(10) = 8 + c.

The solution of the initial value problem is implicitly defined by

ln |2 + y| = x3 + ln(10)− 8.

We can take this a step further and write

ln

(
2 + y

10

)
= x3 − 8.

By taking the exponential of both sides of this equation we obtain the
explicit solution

y = 10ex
3−8 − 2.

13. With ln(yx) = x ln(y), we obtain the separated equation

ln(y)

y
dy = 3x dx.

Integrate to obtain
(ln(y))2 = 3x2 + c.

For y(2) = e3, we need

(ln(e3))2 = 3(4) + c,
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6 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

or 9 = 12 + c. Then c = −3 and the solution of the initial value problem
is defined by

(ln(y))2 = 3x2 − 3.

Solve this to obtain the explicit solution

y = e
√

3(x2−1)

if |x| > 1.

14. Because ex−y
2

= exe−y
2

, the variables can be separated to obtain

2yey
2

dy = ex dx.

Integrate to get

ey
2

= ex + c.

To satisfy y(4) = −2 we need

e4 = e4 + c

so c = 0 and the solution of the initial value problem is implicitly defined
by

ey
2

= ex,

which reduces to the simpler equation

x = y2.

Because y(4) = −2, the explicit solution is y = −
√
x for x > 0.

15. Separate the variables to obtain

y cos(3y) dy = 2x dx.

Integrate to get
1

3
y sin(3y) +

1

9
cos(3y) = x2 + c,

which implicitly defines a general solution. For y(2/3) = π/3, we need

1

3

π

3
sin(π) +

1

9
cos(π) =

4

9
+ c.

This reduces to

−1

9
=

4

9
+ c,

so c = −5/9 and the solution of the initial value problem is implicitly
defined by

1

3
y sin(3y) +

1

9
cos(3y) = x2 − 5

9
,

or
3y sin(3y) + cos(3y) = 9x2 − 1.
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1.1. TERMINOLOGY AND SEPARABLE EQUATIONS 7

16. Let T (t) be the temperature function. By Newton’s law of cooling, T ′(t) =
k(T−60) for some constant k to be determined. This equation is separable
and is easily solved to obtain:

T (t) = 60 + 30ekt.

To determine k, use the fact that T (10) = 88:

T (10) = 60 + 30e10k = 88.

Then

e10k =
88− 60

30
=

14

15
,

so

k =
1

10
ln(14/15).

Now we know the temperature function completely:

T (t) = 60 + 30ekt = 60 + 30
(
e10k

)t/10

= 60 + 30

(
14

15

)t/10

.

We want to know T (20), so compute

T (20) = 60 + 30

(
14

15

)2

≈ 86.13

degrees Fahrenheit. To see how long it will take for the object to reach 65
degrees, solve for t in

T (t) = 65 = 60 + 30

(
14

15

)t/10

.

Then (
14

15

)t/10

=
65− 60

30
=

1

6
,

so
t

10
ln(14/15) = ln(1/6) = − ln(6).

The object reaches 65 degrees at time

t = − 10 ln(6)

ln(14/15)
≈ 259.7

minutes.
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8 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

17. Suppose the thermometer was removed from the house at time t = 0, and
let T (t) be the temperature function. Let A be the ambient temperature
outside the house (assumed constant). By Newton’s law,

T ′(t) = k(t−A).

We are also given that T (0) = 70 and T (5) = 60. Further, fifteen minutes
after being removed from the house, the thermometer reads 50.4, so

T (15) = 50.4.

We want to determine A, the constant outside temperature. From the
differential equation for T ,

1

T −A
dT = kdt.

Integrate this, as we have done before, to get

T (t) = A+ cekt.

Now,
T (0) = 70 = A+ c,

so c = 70−A and
T (t) = A+ (70−A)ekt.

Now use the other two conditions:

T (5) = A+ (70−A)e5k = 15.5 and T (15) = A+ (70−A)e15k = 50.4.

From the equation for T (5), solve for e5k to get

e5k =
60−A
70−A

.

Then

e15k =
(
e5k
)3

=

(
60−A
70−A

)3

.

Substitute this into the equation T (15) to get

(70−A)

(
60−A
70−A

)3

= 50.4−A.

Then
(60−A)3 = (50.4−A)(70−A)2.

The cubic terms cancel and this reduces to the quadratic equation

10.4A2 − 1156A+ 30960 = 0,

with roots 45 and (approximately) 66.15385. Clearly the outside temper-
ature must be less than 50, and must therefore equal 45 degree.
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1.1. TERMINOLOGY AND SEPARABLE EQUATIONS 9

18. The amount A(t) of radioactive material at time t is modeled by

A′(t) = kA,A(0) = e3

together with the given half-life of the material,

A(ln(2)) =
1

2
e3.

Solve this (as in the text) to obtain

A(t) =

(
1

2

)t/ ln(2)

e3.

Then

A(3) = e3

(
1

2

)3/ ln(2)

= 1 tonne.

19. The problem is like Problem 18, and we find that the amount of Uranium-
235 at time t is

U(t) = 10

(
1

2

)t/(4.5(109))

,

with t in years. Then

U(109) = 10

(
1

2

)1/4.5

≈ 8.57 kg.

20. At time t there will be A(t) = 12ekt grams, and A(4) = 12e4k = 9.1. Solve
this for k to get

k =
1

4
ln

(
9.1

12

)
.

The half-life of this element is the time t∗ it will take for there to be 6
grams, so

A(t∗) = 6 = 12eln(9.1/12)t∗/4.

Solve this to get

t∗ =
4 ln(1/2)

ln(9.1/12)
≈ 10.02 minutes.

21. Let

I(x) =

∫ ∞
0

e−t
2−(x/t)2 dt.

The integral we want is I(3). Compute

I ′(x) = −2x

∫ ∞
0

1

t2
e−t

2−(x/t)2 dt.
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10 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

Let u = x/t, so t = x/u and

dt = − x

u2
du.

Then

I ′(x) = −2x

∫ 0

∞

(
u2

x2

)
e−(x/u)2−u2−x

u2
du

= −2I(x).

Then I(x) satisfies the separable differential equation I ′ = −2I, with
general solution of the form I(x) = ce−2x. Now observe that

I(0) =

∫ ∞
0

e−t
2

dt =

√
π

2
= c,

in which we used a standard integral that arises often in statistics. Then

I(x) =

√
π

2
e−2x.

Finally, put x = 3 for the particular integral of interest:

I(3) =

∫ ∞
0

e−t
2−(9/t)2 dt =

√
π

2
e−6.

22. Begin with the logistic equation

P ′(t) = aP (t)− bP (t)2,

in which a and b are positive constants. Then

dP

dt
= P (a− bP )

so
1

P (a− bP )
dP = dt

and the variables are separated. To make the integration easier, write this
equation as (

1

a

1

P
+
b

a

1

a− bP

)
dP = dt.

Integrate to obtain

1

a
ln(P )− b

a
ln(a− bP ) = t+ c.

if P (t) > − and a− bP (t) > 0. Using properties of the logarithm, we can
write this equation as

ln

(
P

a− bP

)
= at+ k,

© 2018 Cengage Learning. All Rights reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



1.1. TERMINOLOGY AND SEPARABLE EQUATIONS 11

in which k = ac is still constant. Then

P

a− bP
= eat+k = ekeat = Keat,

in which K = ek is a positive constant. Now suppose the initial population
(say at time zero) is p0. Then P (0) = p0 and

p0

a− bp0
= K.

We now have
P

a− bP
=

p0

a− bp0
eat.

It is a straightforward algebraic manipulation to solve this for P (t):

P (t) =
ap0

a− bp0 + bp0
eat.

This is the solution of the logistic equation with P (0) = p0.

Because a− bp0 > 0 by assumption, then

bp0e
at < a− bp0 + bpeat,

so
P (t) <

ap0

bp0eat
eat =

a

b
.

This means that this population function is bounded above. Further, by
multiplying the numerator and denominator of P (t) by e(−at, we have

lim
t→∞

P (t) = lim
t→∞

ap0

(a− bp0)e−at + bp0

= lim
t→∞

ap0

bp0
=
a

b
.

23. With a and b as given, and p0 = 3, 929, 214 (the population in 1790), the
logistic population function for the United States is

P (t) =
123, 141.5668

0.03071576577 + 0.0006242342283e0.03134t
e0.03134t.

If we attempt an exponential model Q(t) = Aekt, then take A = Q(0) =
3, 929, 214, the population in 1790. To find k, use the fact that

Q(10) = 5308483 = 3929214e10k

and we can solve for k to get

k =
1

10
ln

(
5308483

3929214

)
≈ 0.03008667012.
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12 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

year population P (t) percent error Q(t) percent error
1790 3,929,213 3,929,214 0 3,929,214 0
1800 5,308,483 5,336,313 0.52 5,308,483 0
1810 7,239,881 7,228,171 -0.16 7,179,158 -0.94
1820 9,638,453 9,757,448 1.23 7,179,158 0.53
1830 12,886,020 13,110,174 1.90 13,000,754 1.75
1840 17,169,453 17,507,365 2.57 17,685,992 3.61
1850 23,191,876 23.193,639 0.008 23,894,292 3.03
1860 31,443,321 30,414,301 -3.27 32,281,888 2.67
1870 38,558,371 39,374,437 2.12 43,613,774 13.11
1880 50,189,209 50,180,383 -0.018 58,923,484 17.40
1890 62,979766 62,772,907 -0.33 79,073,491 26.40
1900 76,212,168 76,873,907 0.87 107,551,857 41.12
1910 92,228,496 91,976,297 -0.27 145,303,703 57.55
1920 106,021,537 107,398,941 1.30 196,312,254 83.16
1930 123,202,624 122,401,360 -0.65
1940 132,164,569 136,329,577 3.15
1950 151,325,798 148,679,224 -1.75
1960 179,323,175 150,231,097 -11.2
1970 203,302,031 167,943,428 -17.39
1980 226,547,042 174,940,040 -22.78

Table 1.1: Census data for Problem 23

The exponential model, using these two data points (1790 and 1800 pop-
ulations), is

Q(t) = 3929214e0.03008667012t.

Table 1.1 uses Q(t) and P (t) to predict later populations from these two
initial figures. The logistic model remains quite accurate until about 1960,
at which time it loses accuracy quickly. The exponential model becomes
quite inaccurate by 1870, after which the error becomes so large that it
is not worth computing further. Exponential models do not work well
over time with complex populations, such as fish in the ocean or countries
throughout the world.

1.2 The Linear First-Order Equation

1. With p(x) = −3/x, and integrating factor is

e
∫

(−3/x) dx = e−3 ln(x) = x−3

for x > 0. Multiply the differential equation by x−3 to get

x−3y′ − 3x−4 = 2x−1.
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1.2. THE LINEAR FIRST-ORDER EQUATION 13

or
d

dx
(x−3y) =

2

x
.

Integrate to get

x−3y = 2 ln(x) + c,

with c an arbitrary constant. For x > 0 we have a general solution

y = 2x3 ln(x) + cx3.

In the last integration, we can allow x < 0 by replacing ln(x) with ln |x|
to derive the solution

y = 2x3 ln |x|+ cx3

for x 6= 0.

2. e
∫
dx = ex is an integrating factor. Multiply the differential equation by

ex to get

y′ex + yex =
1

2
(e2x − 1).

Then

(exy)′ =
1

2
(e2x − 1)

and an integration gives us

exy =
1

4
e2x − 1

2
x+ c.

Then

y =
1

4
ex − 1

2
xe−x + ce−x

is a general solution, with c an arbitrary constant.

3. e
∫

2 dx = e2x is an integrating factor. Multiply the differential equation by
e2x:

y′e2x + 2ye2x = xe2x,

or

(e2xy)′ = xe2x.

Integrate to get

e2xy =
1

2
xe2x − 1

4
e2x + c.

giving us the general solution

y =
1

2
x− 1

4
+ ce−2x.
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14 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

4. For an integrating factor, compute

e
∫

sec(x) dx = eln | sec(x)+tan(x)| = sec(x) + tan(x).

Multiply the differential equation by this integrating factor:

y′(sec(x) + tan(x)) + sec(x)(sec(x) + tan(x))y

= y′(sec(x) + tan(x)) + (sec(x) tan(x) + sec2(x))y

= ((sec(x) + tan(x))y)′

= cos(x)(sec(x) + tan(x))

= 1 + sin(x).

We therefore have

((sec(x) + tan(x))y)′ = 1 + sin(x).

Integrate to get

y(sec(x) + tan(x)) = x− cos(x) + c.

Then

y =
x− cos(x) + c

sec(x) + tan(x)
.

This is a general solution. If we wish, we can also observe that

1

sec(x) + tan(x)
=

cos(x)

1 + sin(x)

to obtain

y = (x− cos(x) + c)

(
cos(x)

1 + sin(x)

)
=
x cos(x)− cos2(x) + c cos(x)

1 + sin(x)
.

5. First determine the integrating factor

e
∫
−2 dx = e−2x.

Multiply the differential equation by e−2x to get

(e−2xy)′ = −8x2e−2x.

Integrate to get

e−2xy =

∫
−8x2e−2x dx = 4x2e−2x + 4xe−2x + 2e−2x + c.

This yields the general solution

y = 4x2 + 4x+ 2 + ce2x.
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1.2. THE LINEAR FIRST-ORDER EQUATION 15

6. e
∫

3 dx = e3x is an integrating factor. Multiply the differential equation by
e3x to get

(e3xy)′ = 5e5x − 6e3x.

Integrate this equation:

e3xy = e5x − 2e3x + c.

Now we have a general solution

y = e2x − 2 + ce−3x.

We need

y(0) = 2 = 1− 2 + c,

so c = 3. The unique solution of the initial value problem is

y = e2x + 3e−3x − 2.

7. x− 2 is an integrating factor for the differential equation because

e
∫

(1/(x−2)) dx = eln(x−2) = x− 2.

Multiply the differential equation by x− 2 to get

((x− 2)y)′ = 3x(x− 2).

Integrate to get

(x− 2)y = x3 − 3x2 + c.

This gives us the general solution

y =
1

x− 2
(x3 − 3x2 + c).

Now we need

y(3) = 27− 27 + c = 4,

so c = 4 and the solution of the initial value problem is

y =
1

x− 2
(x3 − 3x2 + 4).

8. e
∫

(−1) dx = e−x is an integrating factor. Multiply the differential equation
by e−x to get:

(ye−x)′ = 2e3x.

Integrate to get

ye−x =
2

3
e3x + c,
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16 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

and we have the general solution

y =
2

3
e4x + cex.

We need

y(0) =
2

3
+ c = −3,

so c = −11/3 and the initial value problem has the solution

y =
2

3
e4x − 11

3
ex.

9. First derive the integrating factor

e
∫

(2/(x+1)) dx = e2 ln(x+1) = eln((x+1)2) = (x+ 1)2.

Multiply the differential equation by (x+ 1)2 to obtain(
(x+ 1)2y

)′
= 3(x+ 1)2.

Integrate to obtain
(x+ 1)2y = (x+ 1)3 + c.

Then
y = x+ 1 +

c

(x+ 1)2
.

Now
y(0) = 1 + c = 5

so c = 4 and the initial value problem has the solution

y = x+ 1 +
4

(x+ 1)2
.

10. An integrating factor is

e
∫

(5/9x) dx = e(5/9) ln(x) = eln(x5/9) = x5/9.

Multiply the differential equation by x5/9 to get

(yx5/9)′ = 3x32/9 + x14/9.

Integrate to get

yx5/9 =
27

41
x41/9 +

9

23
x23/9 + c.

Then

y =
27

41
x4 +

9

23
x2 + cx−5/9.

Finally, we need

y(−1) =
27

41
+

9

23
− c = 4.

Then c = −2782/943, so the initial value problem has the solution

y =
23

41
x4 +

9

23
x2 − 2782

943
x−5/9.
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1.2. THE LINEAR FIRST-ORDER EQUATION 17

11. Let (x, y) be a point on the curve. The tangent line at (x, y) must pass
through (0, 2x2), and so has slope

y′ =
y − 2x2

x
.

This is the linear differential equation

y′ − 1

x
y = −2x.

An integrating factor is

e−
∫

(1/x) dx = e− ln(x) = eln(1/x) =
1

x
,

so multiply the differential equation by 1/x to get

1

x
y′ − 1

x2
y = −2.

This is (
1

x
y

)′
= −2.

Integrate to get
1

x
y = −2x+ c.

Then
y = −2x2 + cx,

in which c can be any number.

12. Let A(t) be the number of pounds of salt in the tank at time t ≥ 0. Then

dA

dt
= rate salt is added − rate salt is removed

= 6− 2

(
A(t)

50 + t

)
.

We must solve this subject to the initial condition A(0) = 25. The differ-
ential equation is

A′ +
2

50 + t
A = 6,

which is linear with integrating factor

e
∫

2/(50+t) dt = e2 ln(50+t) = (50 + t)2.

Multiply the differential equation by (50 + t)2 to get

(50 + t)2A′ + 2(50 + t)A = 6(50 + t)2.
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18 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

This is (
(50 + t)2A

)′
= 6(50 + t)2.

Integrate this equation to get

(50 + t)2A = 2(50 + t)3 + c,

which we will write as

A(t) = 2(50 + t) +
c

(50 + t)2
.

We need c so that
A(0) = 100 +

c

2500
= 25,

so c = 187, 500. The number of pounds of salt in the tank at time t is

A(t) = 2(50 + t)− 187, 500

(50 + t)2
.

13. Let A1(t) and A2(t) be the number of pounds of salt in tanks 1 and 2,
respectively, at time t. Then

A′1(t) =
5

2
− 5A1(t)

100
;A1(0) = 20

and

A′2(t) =
5A1(t)

100
− 5A2(t)

150
;A2(0) = 90.

Solve the linear initial value problem for A1(t) to get

A1(t) = 50− 30e−t/20.

Substitute this into the differential equation for A2(t) to get

A′2 +
1

30
A2 =

5

2
− 3

2
e−t/20;A2(0) = 90.

Solve this linear problem to obtain

A2(t) = 75 + 90e−t/20 − 75e−t/30.

Tank 2 has its minimum when A′2(t) = 0, and this occurs when

2.5e−t/30 − 4.5e−t/20 = 0.

This occurs when et/60 = 9/5, or t = 60 ln(9/5). Then

A2(t)min = A2(60 ln(9/5)) =
5450

81

pounds.
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1.3. EXACT EQUATIONS 19

1.3 Exact Equations

In these problems it is assumed that the differential equation has the form
M(x, y) +N(x, y)y′ = 0, or, in differential form, M(x, y) dx+N(x, y) dy = 0.

1. With M(x, y) = 2y2 + yexy and N(x, y) = 4xy + xexy + 2y. Then

∂N

∂x
= 4y + exy + xyexy =

∂M

∂y

for all (x, y), so the differential equation is exact on the entire plane. A
potential function ϕ(x, y) must satisfy

∂ϕ

∂x
= M(x, y) = 2y2 + yexy

and
∂ϕ

∂y
= N(x, y) = 4xy + xexy + 2y.

Choose one to integrate. If we begin with ∂ϕ/∂x = M , then integrate
with respect to x to get

ϕ(x, y) = 2xy2 + exy + α(y),

with α(y) the “constant” of integration with respect to x. Then we must
have

∂ϕ

∂y
= 4xy + xexy + α′(y) = 4xy + xexy + 2y.

This requires that α′(y) = 2y, so we can choose α(y) = y2 to obtain the
potential function

ϕ(x, y) = 2xy2 + exy + y2.

The general solution is defined implicitly by the equation

2xy2 + exy + y2 = c, ,

with c an arbitrary constant.

2. ∂M/∂y = 4x = ∂N/∂x for all (x, y), so this equation is exact on the entire
plane. For a potential function, we can begin by integrating

∂ϕ

∂y
= 2x2 + 3y2

to get
ϕ(x, y) = 2x2y + y3 + c(x).

Then
∂ϕ

∂x
= 4xy + 2x = 4xy + c′(x).
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20 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

Then c′(x) = 2x so we can choose c(x) = x2 to obtain the potential
function

ϕ(x, y) = 2x2y + y3 + x2.

The general solution is defined implicitly by

2x2y + y3 + x2 = k,

with k an arbitrary constant.

3. ∂M/∂y = 4x + 2x2 and ∂N/∂x = 4x, so this equation is not exact (on
any rectangle).

4.
∂M

∂y
= −2 sin(x+ y) + 2x cos(x+ y) =

∂N

∂x
,

for all (x, y), so this equation is exact on the entire plane. Integrate
∂ϕ/∂x = M or ∂ϕ/∂y = N to obtain the potential function

ϕ(x, y) = 2x cos(x+ y).

The general solution is defined implicitly by

2x cos(x+ y) = k

with k an arbitrary constant.

5. ∂M/∂y = 1 = ∂N/∂x, for x 6= 0, so this equation is exact on the plane
except at points (0, y). Integrate ∂ϕ/∂x = M or ∂ϕ/∂y = N to find the
potential function

ϕ(x, y) = ln |x|+ xy + y3

for x 6= 0. The general solution is defined by an equation

ln |x|+ xy + y3 = k.

6. For the equation to be exact, we need

∂M

∂y
= αxyα−1 =

∂N

∂x
= −2xyα−1.

This will hold if α = −2. With this choice of α, the (exact) equation is

3x2 + xy−2 − x2y−3y′ = 0.

Routine integrations produce a potential function

ϕ(x, y) = x3 +
x2

2y2
.

The general solution is defined by the equation

x3 +
x2

2y2
= k,

for y 6= 0.
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7. For this equation to be exact, we need

∂M

∂y
= 6xy2 − 3 =

∂N

∂x
= −3− 2αxy2.

This will be true if α = −3. By integrating, we find a potential function

ϕ(x, y) = x2y3 − 3xy − 3y2

and a general solution is defined implicitly by

x2y3 − 3xy − 3y2 = k.

8. We have

∂M

∂y
= 2− 2y sec2(xy2)− 2xy3 sec2(xy2) tan(xy2) =

∂N

∂x
,

for all (x, y), so this equation is exact over the entire plane. By integrating
∂ϕ/∂x = 2y − y2 sec2(xy2) with respect to x, we find that

ϕ(x, y) = 2xy − tan(xy2) + c(y).

Then

∂ϕ

∂y
= 2x− 2xy sec2(xy2)

= 2x− 2xy sec2(xy2) + c′(y).

Then c′(y) = 0 and we can choose c(y) = 0 to obtain the potential function

ϕ(x, y) = 2xy − tan(xy2).

A general solution is defined implicitly by

2xy − tan(xy2) = k.

For the solution satisfying y(1) = 2, put x = 1 and y = 2 into this
implicitly defined solution to get

4− tan(4) = k.

The solution of the initial value problem is defined implicitly by

2xy − tan(xy2) = 4− tan(4).

9. Because ∂M/∂y = 12y2 = ∂N/∂x, this equation is exact for all (x, y).
Straightforward integrations yield the potential function

ϕ(x, y) = 3xy4 − x.

© 2018 Cengage Learning. All Rights reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



22 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

A general solution is defined implicitly by

3xy4 − x = k.

To satisfy the condition y(1) = 2, we must choose k so that

48− 1 = k,

so k = 47 and the solution of the initial value problem is specified by the
equation

3xy4 − x = 47.

In this case we can actually write this solution explicitly with y in terms
of x.

10. First,

∂M

∂y
=

1

x
ey/x − 1

x
ey/x − y

x2
ey/x

= − y

x2
ey/x =

∂N

∂x
,

so the equation is exact for all (x, y) with x 6= 0. For a potential function,
we can begin with

∂ϕ

∂y
= ey/x

and integrate with respect to y to get

ϕ(x, y) = xey/x + c(x).

Then we need

∂ϕ

∂x
= 1 + ey/x − y

x
ey/x = ey/x − y

x
ey/x + c′(x).

This requires that c′(x) = 1 and we can choose c(x) = x. Then

ϕ(x, y) = xey/x + x.

The general solution of the differential equation is implicitly defined by

xey/x + x = k.

To have y(1) = −5, we must choose k so that

e−5 + 1 = k.

The solution of the initial value problem is given by

xey/x + x = 1 + e−5.

This can be solve for y to obtain the explicit solution

y = x ln

(
1 + e−5

x+ 1

)
for x+ 1 > 0.
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11. First,
∂M

∂y
= −2x sin(2y − x)− 2 cos(2y − x) =

∂N

∂x
,

so the differential equation is exact for all (x, y). For a potential function,
integrate

∂ϕ

∂y
= −2x cos(2y − x)

with respect to y to get

ϕ(x, y) = −x sin(2y − x) + c(x).

Then we must have

∂ϕ

∂x
= x cos(2y − x)− sin(2y − x)

= x cos(2y − x)− sin(2y − x) + c′(x).

Then c′(x) = 0 and we can take c(x) to be any constant. Choosing c(x) = 0
yields

ϕ(x, y) = −x sin(2y − x).

The general solution is defined implicitly by

−x sin(2y − x) = k.

To satisfy y(π/12) = π/8, we need

− π

12
sin(π/6) = k,

so choose k = −π/24 to obtain the solution defined by

−x sin(2y − x) = − π

24

which of course is the same as

x sin(2y − x) =
π

24
.

We can also write

y =
1

2

(
x+ arcsin

( π

24x

))
for x 6= 0.

12.
∂M

∂y
= ey =

∂N

∂x

so the differential equation is exact. Integrate

∂ϕ

∂x
= ey
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24 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

with respect to x to get

ϕ(x, y) = xey + c(y).

Then
∂ϕ

∂y
= xey + c′(y) = xey − 1,

so c′(y) = −1 and we can let c(y) = −y. This gives us the potential
function

ϕ(x, y) = xey − y.

The general solution is given by

xey − y = k.

For y(5) = 0 we need
5− 0 = k

so k = 5 and the solution of the initial value problem is given by

xey − y = 5.

13. ϕ+ c is also a potential function if ϕ is because

∂ϕ

∂x
=
∂(ϕ+ c)

∂x

and
∂ϕ

∂y
=
∂(ϕ+ c)

∂y
.

The function defined implicitly by

ϕ(x, y) = k

is the same as that defined by

ϕ(x, y) + c = k

if k is arbitrary.

14. (a)
∂M

∂y
= 1 and

∂N

∂x
= −1

so this equation is not exact over any rectangle in the plane.

(b) Multiply the differential equation by x−2 to obtain

yx−2 − x−1y′ = 0.

This is exact because
∂M∗

∂y
= x−2 =

∂N∗

∂x
.
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This new equation has potential function ϕ(x, y) = −yx−1 and so has
general solution defined implicitly by

−y
x

= k.

This also defines a general solution of the original differential equation.

(c) Multiply the differential equation by y−2 to obtain

y−1 − xy−2y′ = 0.

This is exact on any region of the plane not containing y = 0, because

∂M∗∗

∂y
= −y−2 =

∂N∗∗

∂x
.

The new equation has potential function ϕ(x, y) = xy−1, so its general
solution is defined implicitly by

xy−1 = k.

It is easy to check that this also defines a solution of the original differential
equation.

(d) Multiply the differential equation by xy−2 to obtain

xy−2 − x2y−3y′ = 0.

This is exact (on any region not containing y = 0) because

∂M∗∗∗

∂y
= −2xy−3 =

∂N∗∗∗

∂x
.

Integrate ∂ϕ/∂x = xy−2 with respect to x to obtain

ϕ(x, y) =
1

2
x2y−2 + c(y).

Then
∂ϕ

∂y
= −x−2y−3 + c′(y) = −x2y−3,

so c′ = 0 and we can choose c(y) = 0. Then

ϕ(x, y) =
1

2
x2y−2

and we can define a general solution of this differential equation as

x2y−2 = k.

Here we absorbed the factor of 1/2 into the arbitrary constant c. This
again defines a solution of the original differential equation.
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(e) The original differential equation can be written as the linear equation

y′ − 1

x
y = 0.

This has integrating factor

e
∫
−(1/x) dx = e− ln(x) = eln(x−1) = x−1.

Multiply the differential equation by x−1 to write this equation as

(x−1y)′ = 0,

so x−1y = c implicitly defines the general solution.

(f) The methods of (b) through (e) yield the same general solution. For
example, in (b) we obtained −yx−1 = c, which we can write as y = −cx.
Because c is an arbitrary constant, this general solution can be written
y = kx. And in (d) we obtained x2y−2 = c, and this gives the same
solutions as y2 = cx2, or y = kx.

15. First,
∂M

∂y
= x− 3

2
y−5/2 and

∂N

∂x
= 2x.

and these are not equal on any rectangle in the plane.

In differential form, the differential equation is

(xy + y−3/2) dx+ x2 dy = 0.

Multiply this equation by xayb to get

(xa+1yb+1 + xayb−3/2) dx+ xa+2yb dy = 0 = M∗ dx+N∗ dy.

For this to be exact, we need

∂M∗

∂y
= (b+ 1)xa+1yb +

(
(b− 3

2

)
xayb−5/2

=
∂N∗

∂x
= (a+ 2)xa+1yb.

Divide this equation by xayb to get

(b+ 1)x+

(
b− 3

2

)
y−5/2 = (a+ 2)x.

This will hold for all x and y if we let b = 3/2 and then choose a and b so
that b+ 1 = a+ 2. Thus choose

a =
1

2
and b =

3

2

© 2018 Cengage Learning. All Rights reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



1.3. EXACT EQUATIONS 27

to get the integrating factor µ(x, y) = x1/2b3/2. Multiply the original
differential equation by this to get

(x3/2y5/2 + x1/2) dx+ x5/2y1/2 dy = 0.

To find a potential function, integrate

∂ϕ

∂y
= x5/2y3/2

with respect to y to get

ϕ(x, y) =
2

5
x5/2y5/2 + c(x).

Then we need

∂ϕ

∂x
= x3/2y5/2 + c′(x) = x3/2y5/2 + x1/2.

Therefore c′(x) = x1/2, so c(x) = 2x3/2/3 and

ϕ(x) =
2

5
x5/2y5/2 +

2

3
x3/2.

The general solution of the original differential equation is given implicitly
by

2

5
(xy)5/2 +

2

3
x3/2 = k.

In this we must have x 6= 0 and y 6= 0 to ensure that the integrating factor
µ(x, y) 6= 0.

16. It is routine to verify that the differential equation is not exact. To find
an integrating factor, first multiply by xayb to get

(2xayb+2 − 9xa+1yb+1) dx+ (3xa+1yb+1 − 6xa+2yb) dy = 0.

For this to be exact, we must have

∂M

∂y
= 2(b+ 2)xayb+1 − 9(b+ 1)xa+1yb

=
∂N

∂x
= 3(a+ 1)xayb+1 − 6(a+ 2)x+1yb.

Divide by xayb and rearrange terms to obtain

(2(b+ 2)− 3(a+ 1))y = (9(b+ 1)− 6(a+ 2))x.

Because x and y are independent, both coefficients must be zero:

2(b+ 2)− 3(a+ 1) = 0 and 9(b+ 1)− 6(a+ 2) = 0.
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Solve these to get a = b = 1, so µ(x, y) = xy is an integrating factor.
Multiply the differential equation by xy to obtain, in differential form,

(2xy3 − 9x2y2) dx+ (3x2y2 − 6x3y) dy = 0.

This equation is exact. For a potential function, integrate

∂ϕ

∂x
= 2xy3 − 9x2y2

with respect to x to get

ϕ(x, y) = x2y3 − 3x3y2 + c(y).

Then
∂ϕ

∂y
= 3x2y2 − 6x3y + c′(y) = 3x2y2 − 6x3y.

Then c′(y) = 0 and we can choose c(y) = 0 got s potential function

ϕ(x, y) = x2y3 − 3x3y2.

A general solution of this equation, and also the original equation, is given
by

x2y3 − 3x3y2 = k.

This requires that µ(x, y) 6= 0.

1.4 Homogeneous, Bernoulli and Riccati Equa-
tions

1. This is a Riccati equation and one solution (by inspection) is S(x) = x.
Let y = x+ 1/z to obtain

2− 1

z2
z′ =

1

x2

(
x+

1

z

)2

− 1

x

(
x+

1

z

)
+ 1.

This simplifies to

z′ +
1

x
z = − 1

x2
,

a linear equation with integrating factor

e
∫

(1/x) dx = eln(x) = x.

The differential equation for z can therefore be written

(xz)′ = − 1

x
.

Integrate to get
xz = − ln(x) + c,
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so

z = − ln(x)

x
+
c

x
=
c− ln(x)

x
.

for x > 0. Then

y = x+
1

z
= x+

x

c− ln(x)

for x > 0.

2. This is a Bernoulli equation with α = −4/3. Put v = y7/3, so y = v7/3.
Substitute this into the differential equation to get

3

7
v−4/7v′ +

7

3x
v3/7 =

14

3x2
.

This simplifies to the linear differential equation

v′ +
7

3x
v =

14

3x2

which has integrating factor

e
∫

7/3x dx = e(7/3) ln(x) = eln(x7/3) = x7/3

for x > 0. Multiply the differential equation by x7/3 to get

(x7/3v)′ =
14

3
x1/3.

Integrate to get

vx7/3 =
7

2
x4/3 + c.

Because v = y7/3, this gives us

2y7/3x7/3 − 7x4/3 = k,

in which k = 2c is an arbitrary constant. This equation implicitly defines
the general solution.

3. This is a Bernoulli equation with α = 2, so let v = y1−α = y−1 for y 6= 0
and y = 1/v. Compute

y′ =
dy

dv

dv

dx
= − 1

v2
xv′.

The differential equation becomes

− 1

v2
v′ +

x

v
=

x

v2
.

This is
v′ − xv = −x,

© 2018 Cengage Learning. All Rights reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



30 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

a linear equation with integrating factor e−x
2/2. We can therefore write

(e−x
2/2v)′ = −xe−x

2/2.

Integrate to get

e−x
2/2v = e−x

2/2 + c,

so
v = 1 + ce−x

2/2.

The original differential equation has the general solution

y =
1

v
=

1

1 + ce−x2/2
,

in which c is an arbitrary constant.

4. This equation is homogeneous. With y = ux we obtain

u+ xu′ = u+
1

u
.

Then

x
du

dx
=

1

u
,

a separable equation. In differential form, this is

u du =
1

x
dx.

Integrate to get
1

2
u2 = ln |x|+ c.

Then
1

y2
x2 = 2 ln |x|+ k,

where k = 2c is an arbitrary constant. This implicitly defines the general
solution.

5. This differential equation is homogeneous and setting y = ux gives us

u+ xu′ =
u

1 + u
.

This is the separable equation

x
du

dx
=

u

1 + u
− u

which, in terms of x and y, is(
1

u2
+

1

u

)
du = − 1

x
dx.
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Integrate to get
1

u
+ ln |u| = − ln |x|+ c.

With u = y/x this reduces to

−x+ y ln |y| = cy,

with c an arbitrary constant.

6. This is a Riccati equation and one solution (by inspection) is S(x) = 4.
After some routine computation we obtain the general solution

y = 4 +
6x3

c− x3
.

7. The differential equation is exact, with general solution defined implicitly
by

xy − x2 − y2 = c.

8. The differential equation is homogeneous, and y = ux yields the general
solution defined by

sec
(y
x

)
+ tan

(y
x

)
= cx.

9. The differential equation is of Bernoulli type with α = −3/4. The general
solution is defined by

5(xy)7/4 + 7x−5/4 = c.

10. The differential equation is homogeneous and y = ux leads to the separable
differential equation

1− u+ u2

du =
1

x
dx.

Integrate and set u = y/x to obtain the general solution implicitly defined
by

2√
3

arctan

(
2y − x√

3x

)
= ln |x|+ c.

11. The equation is Bernoulli with α = 2 and the change of variables v = y−1

leads to the general solution

y = 2 +
2

cx2 − 1
.

12. The equation is homogeneous and y = ux leads to the general solution
defined by

1

2

x2

y2
= ln |x|+ c.
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13. The differential equation is Riccati and one solution is S(x) = ex. A
general solution is given explicitly by

y =
2ex

ce2x − 1
.

14. The equation is Bernoulli with α = 2 and a general solution is given by

y =
2

3 + cx2
.

15. For the first part,

F

(
ax+ by + c

dx+ py + r

)
= F

(
a+ b(y/x)c/x

d+ p(y/x) + r/x

)
= f

(y
x

)
if and only if c = r = 0.

Next, suppose x = X + h and y = Y + k. Then

dY

dX
= F

(
a(X + h) + b(Y + k) + c

d(x+ h) + p(Y + k) + r

)
= F

(
aX + bY + c+ ah+ bk + c

dX + pY + r + dh+ pk + r

)
.

This equation is homogeneous exactly when h and k can be chosen so that

ah+ bk = −c and dh+ pk = −r.

This 2× 2 system of algebraic equations has a solution exactly when the
determinant of the coefficients is nonzero, and this is the condition that∣∣∣∣a b

d p

∣∣∣∣ = ap− bd 6= 0.

16. Comparing this with problem 15, we have

a = 0, b = 1, c = −3, d = p = 1 and r = −1.

The system to solve for h and k is

k = 3, h+ k = 1.

Then k = 3 and h = −2. Let X = x− 2, Y = y + 3 to obtain

dY

dX
=

Y

X + Y
.

This is a homogeneous equation solved in problem 5. The general of the
current problem is defined by

(y − 3) ln |y − 3| − (x+ 2) = c(y − 3),

with c an arbitrary constant.
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17. Let X = x− 2, Y = y + 3 to get the homogeneous equation

dY

dX
=

3X − Y
X + Y

.

The general solution of the original equation (in terms of x and y) is
defined by

3(x− 2)2 − 2(x− 2)(y + 3)− (y + 3)2 = c,

with c an arbitrary constant.

18. Set X = x+ 5, Y = y+ 1 to obtain the implicitly defined general solution

(x+ 5)2 + 4(x+ 5)(y + 1)− (y + 1)2 = c.

19. Let X = x− 2, Y = y + 1 to obtain the general solution given by

(2x+ y − 3)2 = c(y − x+ 3).

20. Suppose at time t = 0 the dog is at the origin of an x, y− coordinate
system, and the person is at (A, 0). The person moves directly upward
and at time t is at (A, vt), while the dog is at (x, y) and runs toward the
person at a speed 2v. The tangent to the dog’s path joins these two points,
and so has slope

y′ =
vt− y
A− x

.

To find the equation of the dog’s path, we will first eliminate t from this
equation. In the time the person has moved vt units upward, the dog has
run 2vt units along its path of motion, so

2vt =

∫ x

0

(
1 +

(
dy

dξ

)2
)1/2

dξ.

Then

vt = y + (A− x)
dy

dx
=

1

2

∫ x

0

(
1 +

(
dy

dξ

)2
)
dξ.

Then

2(A− x)y′ =

∫ x

0

(
1 +

(
dy

dξ

)2
)
dξ − 2y.

Differentiate this equation to get

2(A− x)y′′ − 2y′ =

(
1 +

(
dy

dx

)2
)
− 2y′,

so
2(A− x)y′′ =

(
1 + (y′)2

)1/2
,
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together with the conditions y(0) = y′(0) = 0.

Now let u = y′ and rewrite the resulting equation to get

1

(1 + u2)1/2
du =

1

2(A− x)
dx.

This has the general solution

ln(u+
√

1 + u2) = −1

2
ln(A− x) + c.

Use the condition that y′(0) = u(0) = 0 to obtain

u+
√

1 + u2 =

(
A

A− x

)1/2

.

In terms of y, we now have

y′ +
√

1 + (y′)2 =

√
A√

A− x
; y(0) = 0.

But √
1 + (y′)2 = 2(A− x)y′′,

so

y′ + 2(A− x)y′′ =

√
A√

A− x
.

Let w = y′ to get

w′ +
1

2(A− x)
w =

√
A

2(A− x)3/2
.

This linear differential equation has integrating factor 1/
√
A− x, so(

w√
A− x

)′
=

A

2(A− x)2
.

Integrate this to get

w =

√
A

2

1√
A− x

+ c
√
A− x.

Use the fact that w(0) = 0 to get

w =

√
A

2

1√
A− x

− 1

2
√
A

√
A− x = y′.

Integrate this to get

y = −
√
A
√
A− x+

1

3
√
A

(A− x)3/2 + c.
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Because y(0) = 0,

y = −
√
A
√
A− x+

1

3
√
A

(A− x)3/2 +
2

3
A.

Now the dog catches the person at x = A, so they meet at (A, 2A/3). This
is also the point (A, vt), so vt = 2A/3 and they meet at time

t =
2A

3v
.

21. It is convenient to use polar coordinates to formulate a model for this
problem. Put the origin at the submarine at the time of sighting, and
the polar axis the line from there to the destroyer at this time (the point
(9, 0)). Initially the destroyer should steam at speed 2v directly toward the
origin, until it reaches (3, 0). During this time the submarine, moving at
speed v, will have moved three units from the point where it was sighted.
Let θ = ϕ be the ray (half-line) along which the submarine is moving.

Upon reaching (3, 0), the destroyer should execute a search pattern along
a path r = f(θ). The object is to choose this path so that the sub and
the destroyer both reach (f(ϕ,ϕ) at the same time T after the sighting.

From sighting to interception, the destroyer travels a distance

6 +

∫ ϕ

0

√
(f(θ))2 + (f ′(θ))2 dθ,

so

T =
1

2v

(
6 +

∫ ϕ

0

√
(f(θ))2 + (f ′(θ))2 dθ

)
.

For the submarine,

T =
1

v
f(ϕ).

Equate these two expressions for T and differentiate with respect to ϕ to
get

1

2

√
(f(ϕ))2 + (f ′(ϕ))2 = f ′(ϕ).

Denote the variable as θ and rearrange the last equation to obtain

f ′(θ)

f(θ)
= ± 1√

3
.

The positive sign here indicates that the destroyer should execute a star-
board (left) turn, while the negative sign is for a portside turn. Taking
the positive sign, solve for f(θ) to get

f(θ) = keθ/
√

3.
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Now f(0) = k = 3, so the path of the destroyer is part of the graph of

f(θ) = 3seθ/
√

3.

After sailing directly to (3, 0), the destroyer should execute this spiral
pattern. A similar conclusion follows if the negative sign of 1/

√
3 is used.

This shows that the destroyer can carry out a maneuver that will take it
directly over the submarine at some time. However, there is no way to
solve for the specific time, so it is unknown when this will occur.

22. (a) Observe that each bug follows the same curve of pursuit relative to the
center from which it starts. Place a polar coordinate system as suggested
and determine the pursuit curve for the bug starting at θ = 0, r = a/

√
2.

At t > 0, the bug will be at (f(θ), θ) and its target is at (f(θ), θ + π/2).
Show that

dy

dx
=
dy/dθ

dx/dθ
=
f ′(θ) sin(θ) + f(θ) cos(θ)

f ′(θ)cos(θ)− f(θ) sin(θ)
.

At the same time, the direction of the tangent must be from the position
(f(θ), θ) to the target location (f(θ), θ + π/2), so we also have

dy

dx
=
f(θ) sin(θ + π/2)− f(θ) sin(θ)

f(θ) cos(θ + π/2)− f(θ) cos(θ)

=
cos(θ)− sin(θ)

− sin(θ)− cos(θ)
=

sin(θ)− cos(θ)

sin(θ) + cos(θ)
.

Equate these two expressions for dy/dx and rearrange terms to get

f ′(θ) + f(θ) = 0.

Further, f(0) = a/
√

2. This is a separable, and also linear, differential
equation, and the initial value problem has the solution

r = f(θ) =
a√
2
e−θ.

This is the pursuit curve (in polar coordinates).

(b) The distance traveled is∫ ∞
0

√
r2 + (r′)2 dθ

=

∫ ∞
0

[(
a√
2
e−θ
)2

+

(
− a√

2
e−θ
)2
]1/2

dθ

= a

∫ ∞
0

e−θ dθ = a.

(c) Because r = ae−θ/
√

2 > 0 for all θ, no bug actually catches its quarry.
The actual distance between pursuer and quarry is ae−θ.
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